Cryptocurrencies, Bitcoin and Blockchain ICAS

Gridcoin 5.0.0.0-Mandatory "Fern" Release

https://github.com/gridcoin-community/Gridcoin-Research/releases/tag/5.0.0.0
Finally! After over ten months of development and testing, "Fern" has arrived! This is a whopper. 240 pull requests merged. Essentially a complete rewrite that was started with the scraper (the "neural net" rewrite) in "Denise" has now been completed. Practically the ENTIRE Gridcoin specific codebase resting on top of the vanilla Bitcoin/Peercoin/Blackcoin vanilla PoS code has been rewritten. This removes the team requirement at last (see below), although there are many other important improvements besides that.
Fern was a monumental undertaking. We had to encode all of the old rules active for the v10 block protocol in new code and ensure that the new code was 100% compatible. This had to be done in such a way as to clear out all of the old spaghetti and ring-fence it with tightly controlled class implementations. We then wrote an entirely new, simplified ruleset for research rewards and reengineered contracts (which includes beacon management, polls, and voting) using properly classed code. The fundamentals of Gridcoin with this release are now on a very sound and maintainable footing, and the developers believe the codebase as updated here will serve as the fundamental basis for Gridcoin's future roadmap.
We have been testing this for MONTHS on testnet in various stages. The v10 (legacy) compatibility code has been running on testnet continuously as it was developed to ensure compatibility with existing nodes. During the last few months, we have done two private testnet forks and then the full public testnet testing for v11 code (the new protocol which is what Fern implements). The developers have also been running non-staking "sentinel" nodes on mainnet with this code to verify that the consensus rules are problem-free for the legacy compatibility code on the broader mainnet. We believe this amount of testing is going to result in a smooth rollout.
Given the amount of changes in Fern, I am presenting TWO changelogs below. One is high level, which summarizes the most significant changes in the protocol. The second changelog is the detailed one in the usual format, and gives you an inkling of the size of this release.

Highlights

Protocol

Note that the protocol changes will not become active until we cross the hard-fork transition height to v11, which has been set at 2053000. Given current average block spacing, this should happen around October 4, about one month from now.
Note that to get all of the beacons in the network on the new protocol, we are requiring ALL beacons to be validated. A two week (14 day) grace period is provided by the code, starting at the time of the transition height, for people currently holding a beacon to validate the beacon and prevent it from expiring. That means that EVERY CRUNCHER must advertise and validate their beacon AFTER the v11 transition (around Oct 4th) and BEFORE October 18th (or more precisely, 14 days from the actual date of the v11 transition). If you do not advertise and validate your beacon by this time, your beacon will expire and you will stop earning research rewards until you advertise and validate a new beacon. This process has been made much easier by a brand new beacon "wizard" that helps manage beacon advertisements and renewals. Once a beacon has been validated and is a v11 protocol beacon, the normal 180 day expiration rules apply. Note, however, that the 180 day expiration on research rewards has been removed with the Fern update. This means that while your beacon might expire after 180 days, your earned research rewards will be retained and can be claimed by advertising a beacon with the same CPID and going through the validation process again. In other words, you do not lose any earned research rewards if you do not stake a block within 180 days and keep your beacon up-to-date.
The transition height is also when the team requirement will be relaxed for the network.

GUI

Besides the beacon wizard, there are a number of improvements to the GUI, including new UI transaction types (and icons) for staking the superblock, sidestake sends, beacon advertisement, voting, poll creation, and transactions with a message. The main screen has been revamped with a better summary section, and better status icons. Several changes under the hood have improved GUI performance. And finally, the diagnostics have been revamped.

Blockchain

The wallet sync speed has been DRASTICALLY improved. A decent machine with a good network connection should be able to sync the entire mainnet blockchain in less than 4 hours. A fast machine with a really fast network connection and a good SSD can do it in about 2.5 hours. One of our goals was to reduce or eliminate the reliance on snapshots for mainnet, and I think we have accomplished that goal with the new sync speed. We have also streamlined the in-memory structures for the blockchain which shaves some memory use.
There are so many goodies here it is hard to summarize them all.
I would like to thank all of the contributors to this release, but especially thank @cyrossignol, whose incredible contributions formed the backbone of this release. I would also like to pay special thanks to @barton2526, @caraka, and @Quezacoatl1, who tirelessly helped during the testing and polishing phase on testnet with testing and repeated builds for all architectures.
The developers are proud to present this release to the community and we believe this represents the starting point for a true renaissance for Gridcoin!

Summary Changelog

Accrual

Changed

Most significantly, nodes calculate research rewards directly from the magnitudes in EACH superblock between stakes instead of using a two- or three- point average based on a CPID's current magnitude and the magnitude for the CPID when it last staked. For those long-timers in the community, this has been referred to as "Superblock Windows," and was first done in proof-of-concept form by @denravonska.

Removed

Beacons

Added

Changed

Removed

Unaltered

As a reminder:

Superblocks

Added

Changed

Removed

Voting

Added

Changed

Removed

Detailed Changelog

[5.0.0.0] 2020-09-03, mandatory, "Fern"

Added

Changed

Removed

Fixed

submitted by jamescowens to gridcoin [link] [comments]

How to Create Your Own Cryptocurrency Using Python 2020

A blockchain is a public database that irreversibly documents and authenticates the possession and transmission of digital assets. Digital currencies, like Bitcoin and Ethereum, are based on this concept. Blockchain is an exciting technology that you can use to transform the capabilities of your applications.
Of late, we’ve been seeing governments, organizations, and individuals using the blockchain technology to create their own cryptocurrencies—and avoid being left behind. Notably, when Facebook proposed its own cryptocurrency, called Libra, the announcement stirred many waters across the world.

What if you could also follow suit and create your own version of a cryptocurrency?

I thought about this and decided to develop an algorithm that creates a crypto.
I decided to call the cryptocurrency fccCoin.
In this tutorial, I’m going to illustrate the step-by-step process I used to build the digital currency (I used the object-oriented concepts of the Python programming language).
Here is the basic blueprint of the blockchain algorithm for creating the fccCoin:
class Block: def __init__(): #first block class pass def calculate_hash(): #calculates the cryptographic hash of every block class BlockChain: def __init__(self): # constructor method pass def construct_genesis(self): # constructs the initial block pass def construct_block(self, proof_no, prev_hash): # constructs a new block and adds it to the chain pass u/staticmethod def check_validity(): # checks whether the blockchain is valid pass def new_data(self, sender, recipient, quantity): # adds a new transaction to the data of the transactions pass u/staticmethod def construct_proof_of_work(prev_proof): # protects the blockchain from attack pass u/property def last_block(self): # returns the last block in the chain return self.chain[-1]
Now, let me explain what is taking place…
1. Building the first Block class A blockchain comprises of several blocks that are joined to each other (that sounds familiar, right?).
The chaining of blocks takes place such that if one block is tampered with, the rest of the chain becomes invalid.
In applying the above concept, I created the following initial block class
import hashlib import time class Block: def __init__(self, index, proof_no, prev_hash, data, timestamp=None): self.index = index self.proof_no = proof_no self.prev_hash = prev_hash self.data = data self.timestamp = timestamp or time.time() u/property def calculate_hash(self): block_of_string = “{}{}{}{}{}”.format(self.index, self.proof_no, self.prev_hash, self.data, self.timestamp) return hashlib.sha256(block_of_string.encode()).hexdigest() def __repr__(self): return “{} – {} – {} – {} – {}”.format(self.index, self.proof_no, self.prev_hash, self.data, self.timestamp)
As you can see from the code above, I defined the __init__() function, which will be executed when the Block class is being initiated, just like in any other Python class.
I provided the following parameters to the initiation function:
self—this refers to the instance of the Block class, making it possible to access the methods and attributes associated with the class; index—this keeps track of the position of the block within the blockchain; proof_no—this is the number produced during the creation of a new block (called mining); prev_hash—this refers to the hash of the previous block within the chain; data—this gives a record of all transactions completed, such as the quantity bought; timestamp—this places a timestamp for the transactions. The second method in the class, calculate_hash, will generate the hash of the blocks using the above values. The SHA-256 module is imported into the project to assist in obtaining the hashes of the blocks.
After the values have been inputted into the cryptographic hash algorithm, the function will return a 256-bit string representing the contents of the block.
This is how security is achieved in blockchains—every block will have a hash and that hash will rely on the hash of the previous block.
As such, if someone tries to compromise any block in the chain, the other blocks will have invalid hashes, leading to disruption of the entire blockchain network.
Ultimately, a block will look like this:
{ “index”: 2, “proof”: 21, “prev_hash”: “6e27587e8a27d6fe376d4fd9b4edc96c8890346579e5cbf558252b24a8257823”, “transactions”: [ {‘sender’: ‘0’, ‘recipient’: ‘Quincy Larson’, ‘quantity’: 1} ], “timestamp”: 1521646442.4096143 }
2. Building the Blockchain class The main idea of a blockchain, just as the name implies, involves “chaining” several blocks to one another.
Therefore, I’m going to construct a Blockchain class that will be useful in managing the workings of the whole chain. This is where most of the action is going to take place.
The Blockchain class will have various helper methods for completing various tasks in the blockchain.
Let me explain the role of each of the methods in the class.
a. Constructor method This method ensures the blockchain is instantiated.
class BlockChain: def __init__(self): self.chain = [] self.current_data = [] self.nodes = set() self.construct_genesis()
Here are the roles of its attributes:
b. Constructing the genesis block The blockchain requires a construct_genesis method to build the initial block in the chain. In the blockchain convention, this block is special because it symbolizes the start of the blockchain.
In this case, let’s construct it by simply passing some default values to the construct_block method.
I gave both proof_no and prev_hash a value of zero, although you can provide any value you want.
def construct_genesis(self): self.construct_block(proof_no=0, prev_hash=0) def construct_block(self, proof_no, prev_hash): block = Block( index=len(self.chain), proof_no=proof_no, prev_hash=prev_hash, data=self.current_data) self.current_data = [] self.chain.append(block) return block
c. Constructing new blocks
The construct_block method is used for creating new blocks in the blockchain.
Here is what is taking place with the various attributes of this method:
d. Checking validity
The check_validity method is important in assessing the integrity of the blockchain and ensuring anomalies are absent.
As mentioned earlier, hashes are essential for the security of the blockchain as even the slightest change in the object will lead to the generation of a completely new hash.
Therefore, this check_validity method uses if statements to check whether the hash of every block is correct.
It also verifies if every block points to the right previous block, through comparing the value of their hashes. If everything is correct, it returns true; otherwise, it returns false.
u/staticmethod def check_validity(block, prev_block): if prev_block.index + 1 != block.index: return False elif prev_block.calculate_hash != block.prev_hash: return False elif not BlockChain.verifying_proof(block.proof_no, prev_block.proof_no): return False elif block.timestamp <= prev_block.timestamp: return False return True
e. Adding data of transactions
The new_data method is used for adding the data of transactions to a block. It’s a very simple method: it accepts three parameters (sender’s details, receiver’s details, and quantity) and append the transaction data to self.current_data list.
Anytime a new block is created, this list is allocated to that block and reset once more as explained in the construct_block method.
Once the transaction data has been added to the list, the index of the next block to be created is returned.
This index is calculated by adding 1 to the index of the current block (which is the last in the blockchain). The data will assist a user in submitting the transaction in future.
def new_data(self, sender, recipient, quantity): self.current_data.append({ ‘sender’: sender, ‘recipient’: recipient, ‘quantity’: quantity }) return True
f. Adding proof of work
Proof of work is a concept that prevents the blockchain from abuse. Simply, its objective is to identify a number that solves a problem after a certain amount of computing work is done.
If the difficulty level of identifying the number is high, it discourages spamming and tampering with the blockchain.
In this case, we’ll use a simple algorithm that discourages people from mining blocks or creating blocks easily.
u/staticmethod def proof_of_work(last_proof): ”’this simple algorithm identifies a number f’ such that hash(ff’) contain 4 leading zeroes f is the previous f’ f’ is the new proof ”’ proof_no = 0 while BlockChain.verifying_proof(proof_no, last_proof) is False: proof_no += 1 return proof_no u/staticmethod def verifying_proof(last_proof, proof): #verifying the proof: does hash(last_proof, proof) contain 4 leading zeroes? guess = f'{last_proof}{proof}’.encode() guess_hash = hashlib.sha256(guess).hexdigest() return guess_hash[:4] == “0000”
g. Getting the last block
Lastly, the latest_block method is a helper method that assists in obtaining the last block in the blockchain. Remember that the last block is actually the current block in the chain.
u/property def latest_block(self): return self.chain[-1]
Let’s sum everything together
Here is the entire code for creating the fccCoin cryptocurrency.
You can also get the code on this GitHub repository.
import hashlib import time class Block: def __init__(self, index, proof_no, prev_hash, data, timestamp=None): self.index = index self.proof_no = proof_no self.prev_hash = prev_hash self.data = data self.timestamp = timestamp or time.time() u/property def calculate_hash(self): block_of_string = “{}{}{}{}{}”.format(self.index, self.proof_no, self.prev_hash, self.data, self.timestamp) return hashlib.sha256(block_of_string.encode()).hexdigest() def __repr__(self): return “{} – {} – {} – {} – {}”.format(self.index, self.proof_no, self.prev_hash, self.data, self.timestamp) class BlockChain: def __init__(self): self.chain = [] self.current_data = [] self.nodes = set() self.construct_genesis() def construct_genesis(self): self.construct_block(proof_no=0, prev_hash=0) def construct_block(self, proof_no, prev_hash): block = Block( index=len(self.chain), proof_no=proof_no, prev_hash=prev_hash, data=self.current_data) self.current_data = [] self.chain.append(block) return block u/staticmethod def check_validity(block, prev_block): if prev_block.index + 1 != block.index: return False elif prev_block.calculate_hash != block.prev_hash: return False elif not BlockChain.verifying_proof(block.proof_no, prev_block.proof_no): return False elif block.timestamp <= prev_block.timestamp: return False return True def new_data(self, sender, recipient, quantity): self.current_data.append({ ‘sender’: sender, ‘recipient’: recipient, ‘quantity’: quantity }) return True u/staticmethod def proof_of_work(last_proof): ”’this simple algorithm identifies a number f’ such that hash(ff’) contain 4 leading zeroes f is the previous f’ f’ is the new proof ”’ proof_no = 0 while BlockChain.verifying_proof(proof_no, last_proof) is False: proof_no += 1 return proof_no u/staticmethod def verifying_proof(last_proof, proof): #verifying the proof: does hash(last_proof, proof) contain 4 leading zeroes? guess = f'{last_proof}{proof}’.encode() guess_hash = hashlib.sha256(guess).hexdigest() return guess_hash[:4] == “0000” u/property def latest_block(self): return self.chain[-1] def block_mining(self, details_miner): self.new_data( sender=”0″, #it implies that this node has created a new block receiver=details_miner, quantity= 1, #creating a new block (or identifying the proof number) is awarded with 1 ) last_block = self.latest_block last_proof_no = last_block.proof_no proof_no = self.proof_of_work(last_proof_no) last_hash = last_block.calculate_hash block = self.construct_block(proof_no, last_hash) return vars(block) def create_node(self, address): self.nodes.add(address) return True u/staticmethod def obtain_block_object(block_data): #obtains block object from the block data return Block( block_data[‘index’], block_data[‘proof_no’], block_data[‘prev_hash’], block_data[‘data’], timestamp=block_data[‘timestamp’])
Now, let’s test our code to see if it works.
blockchain = BlockChain() print(“***Mining fccCoin about to start***”) print(blockchain.chain) last_block = blockchain.latest_block last_proof_no = last_block.proof_no proof_no = blockchain.proof_of_work(last_proof_no) blockchain.new_data( sender=”0″, #it implies that this node has created a new block recipient=”Quincy Larson”, #let’s send Quincy some coins! quantity= 1, #creating a new block (or identifying the proof number) is awarded with 1 ) last_hash = last_block.calculate_hash block = blockchain.construct_block(proof_no, last_hash) print(“***Mining fccCoin has been successful***”) print(blockchain.chain)
It worked!
Here is the output of the mining process:
***Mining fccCoin about to start*** [0 – 0 – 0 – [] – 1566930640.2707076] ***Mining fccCoin has been successful*** [0 – 0 – 0 – [] – 1566930640.2707076, 1 – 88914 – a8d45cb77cddeac750a9439d629f394da442672e56edfe05827b5e41f4ba0138 – [{‘sender’: ‘0’, ‘recipient’: ‘Quincy Larson’, ‘quantity’: 1}] – 1566930640.5363243]
Conclusion
There you have it!
That’s how you could create your own blockchain using Python.
Let me say that this tutorial just demonstrates the basic concepts for getting your feet wet in the innovative blockchain technology.
If this coin were deployed as-is, it could not meet the present market demands for a stable, secure, and easy-to-use cryptocurrency.
Therefore, it can still be improved by adding additional features to enhance its capabilities for mining and sending financial transactions.
Nonetheless, it’s a good starting point if you decide to make your name known in the amazing world of cryptos.
If you have any comments or questions, please post them below.
Happy (crypto) coding!
Source: Cryptoors
submitted by djkloud to CryptoTechnology [link] [comments]

Hashgraph Vs Blockchain- Top 7 Differences That You Must Know

You know that blockchain technology is continuously evolving at a rapid pace. Blockchains impact is powerful and is impacting business, finance, education, governance, healthcare even in sports, music. There are other similar distributed ledger technologies(DLT) to replace blockchain technology by providing a better solution. Hashgraph is one of them. It solves the distributed ledger differently and claims to be safer, fast, and fair. So here, we will compare two technologies, Hashgraph and Blockchain and which one is better. Before we proceed to the comparison, let us see each one in detail.

What Is Hashgraph?

Hashgraph is a form of distributed consensus which offers another approach to distributed ledger technology. It is a peer-to-peer platform that expels the requirement for any intermediary to complete transactions. It offers a secure, fair and fast network, and its is implemented using Java and Lisp programming languages. This means it supports solidity. One of the best advantages of Hashgraph is its speed. It can handle thousands of transactions per second and is able to verify more than one million signatures per second.

What Is Blockchain?

Blockchain is a popular form of distributed ledger technology. This technology is used by every cryptocurrency ie., bitcoin. Here, peers communicate between themselves to form a peer-to-peer network. Bitcoin uses the basic form of blockchain technology but is not so efficient. Hence we have seen an ascent in another type of blockchain technology. Ethereum is successful with a huge active community. It is a second generation blockchain which means it supports dApps and smart contracts.
In technical terms, blockchain is a series of blocks or records and supports append-only structure. Despite that, the database is immutable means that data that once written, cannot be deleted or altered by anyone else. Hence blockchain is a perfect solution for the issue where data immutability is necessary. Best use cases of blockchain are, supply chain management, voting and finance industry.

Hashgraph vs Blockchain-

1. Programming Language-

Blockchain makes use of languages- Java, C++, Solidity, Ruby and Python. For hashgraph, Lisp and Java languages are used.

2. Approach-

Hashgraph makes use of directed acyclic graph to store and access information. Blockchains are an open-source technology. It stores data in blocks in a linear way. The append approach works seamlessly but it is not always a way for blockchain solutions out there. In both DLTs, each node as a copy of the ledger that makes it decentralized.

3. Consensus Mechanism –

Hashgraph is based on asynchronous Byzantine-Fault Tolerance (aBFT), which provides an improved model of DLT by catering solutions to established cryptocurrency platforms. It uses Gossip about Gossip and virtual voting as a form of gaining network consensus.
Blockchain does not depend on a single approach to consensus. Contingent on cryptography and currency, Blockchain uses numerous consensus algorithms, like Proof of Work, Proof-of-Elapsed Time, Practical Byzantine Fault Tolerance, Proof of Stake, and so on.

4. Speed-

Speed of blockchain varies according to the solution(platform, cryptocurrency, etc.). But it is slower than Hashgraphs. Hashgraph can reach a speed of 5,00,000 transactions per second. Blockchain solutions like ethereum, bitcoin are slow and can do 100 to 10,000 transactions per second. And the Hashgraph Gossip method is a reason behind its speed. With this, less information needs to be propagated across a network.

5. Security-

Blockchain uses a different approach where they use cryptographic methods to ensure security. As we already know, blockchain is a series of blocks or records and that blocks are tamper-proof and no malicious actor can change the integrity of data.
To secure a network from malicious actor, Hashgraph uses an approach- Asynchronous Byzantine Fault Tolerance(aBFT).

7. Efficiency-

Blockchain’s block approach makes it hard for miners to work on a block. There are many instances where two blocks are mined at the same time. At this time, miner’s community needs to decide on one block, and discard the other. At last, miner’s effort is wasted which results in a less efficient network.
Hashgraph is 100% efficient. Hashgraph doesn’t rely on block creation, hence it doesn’t suffer problem.

6. Development Stage-

We have seen that Hashgraph is secured, efficient and offers speed, but it lacks in terms of adoption. Blockchain technology is adopted by various companies and organizations but the adoption rate of Hashgraph is slow.

7. Fairness-

Blockchain is less fair with regards to miners or users. The miner has more power to select orders, process and stop transactions. This is not fair to anyone who is directly or indirectly connected to the network.
Hashgraph manages fairness in a different way. It allocates nodes randomly and uses consensus time stamping, meaning others can not be affected due to the order of transactions. However, the concept of fairness is still vague and isn’t clarified in the Hashgraph whitepaper. It is one of the significant aspects of Hashgraph versus Blockchain comparison.

Use Cases-

Use cases for Hashgraph-
Use cases for Blockchain-

Final words-

Hashgraph is a latest technology as compared to blockchain. But it doesn’t mean that it replaces blockchain. There are a lot of projects that can use blockchain instead of Hashgraph.
submitted by SolaceInfotech to DLT [link] [comments]

Anyone still under the illusion of Microsoft having been transformed into a kinder, more mutually beneficial partner, please read this patent.

WO2020060606 - CRYPTOCURRENCY SYSTEM USING BODY ACTIVITY DATA
https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2020060606&tab=PCTDESCRIPTION
Before reading the following excerpts, keep this sequence of events in mind:
Master Slave (and we're not referring to HDDs here)
Step one: patent technology
Step two: sell slave IoT devices to consumers who readily purchase them especially after being promised that they'll be rewarded in cryotocurrency for their data.
Step three: collect data via Azure on unsuspecting human subjects' fMRI, EEG, body temperatures, EKG, sleep data, digitized health care information, consumer purchasing habits, reading and viewing preferences, social media activity and correlate with activities performed (tasks).
Step four: Use data to refine AI to profile human behavior, predict behavior and refine mind reading capabilities.
This article is actually incorporated in the patent!
https://news.berkeley.edu/2011/09/22/brain-movies/ Scientists use brain imaging to reveal the movies in our mind
Step five: Institute centralized global cryptocurrency financial system with no other alternatives in which to transact legally.
https://www.reddit.com/Bitcoin/comments/4nag4b/1988_economist_cover_predicting_a_world_currency/
https://www.economist.com/finance-and-economics/1998/09/24/one-world-one-money
Step six: To understand step six, Read George Orwell's "1984" or review the concept of an individual's freedoms being based not on the concept of natural rights but on their social credit scores.
Thank you Microsoft, Google, Apple, Amazon, Facebook.
Now the patent excerpts:
CRYPTOCURRENCY SYSTEM USING BODY ACTIVITY DATA
BACKGROUND [0001] A virtual currency (also known as a digital currency) is a medium of exchange implemented through the Internet generally, not tied to a specific government-backed “flat” (printed) currency such as the U.S. dollar or the Euro, and typically designed to allow instantaneous transactions and borderless transfer of ownership. One example of virtual currency is cryptocurrency, wherein cryptography is used to secure transactions and to control the creation of new units. [0002] Several cryptocurrencies exist. Among these, the most well known is a blockchain-based cryptocurrency. Most blockchain-based cryptocurrency is decentralized in the sense that it has no central point of control.
However, blockchain-based cryptocurrency can also be implemented in a centralized system having a central point of control over the cryptocurrency.
Bitcoin is one of the examples of blockchain-based cryptocurrency. It is described in a 2008 article by Satoshi Nakamoto, named“Bitcoin: A peer-to-Peer Electronic Cash System”.
[0003] A blockchain is a data structure that stores a list of transactions and can be thought of as a distributed electronic ledger that records transactions between source identifier(s) and destination identifier(s). The transactions are bundled into blocks and every block (except for the first block) refers back to or is linked to a prior block in the blockchain. Computer resources (or nodes, etc.) maintain the blockchain and cryptographically validate each new block and the transactions contained in the corresponding block. This validation process includes computationally solving a difficult problem that is also easy to verify and is sometimes called a“proof-of-work”. This process is referred to as“mining”. The mining may be a random process with low probability so that a lot of trial and error is required to solve a computationally difficult problem. Accordingly, the mining may require enormous amounts of computational energy. [0004] It is with respect to these and other general considerations that the following embodiments have been described. Also, although relatively specific problems have been discussed, it should be understood that the embodiments should not be limited to solving the specific problems identified in the background.
SUMMARY
[0005] Some exemplary embodiments of the present disclosure may use human body activity associated with a task provided to a user as a solution to“mining” challenges in cryptocurrency systems. For example, a brain wave or body heat emitted from the user when the user performs the task provided by an information or service provider, such as viewing advertisement or using certain internet services, can be used in the mining process. Instead of massive computation work required by some conventional cryptocurrency systems, data generated based on the body activity of the user can be a proof-of-work, and therefore, a user can solve the computationally difficult problem unconsciously. Accordingly, certain exemplary embodiments of the present disclosure may reduce computational energy for the mining process as well as make the mining process faster.
[0006] Systems, methods, and hardware aspects of computer readable storage media are provided herein for a cryptocurrency system using human body activity data. According to various embodiments of the present disclosure, a server may provide a task to a device of a user which is communicatively coupled to the server. A sensor communicatively coupled to or comprised in the device of the user may sense body activity of the user. Body activity data may be generated based on the sensed body activity of the user. A cryptocurrency system communicatively coupled to the device of the user may verify whether or not the body activity data satisfies one or more conditions set by the cryptocurrency system, and award cryptocurrency to the user whose body activity data is verified.
[0007] Examples are implemented as a computer process, a computing system, or as an article of manufacture such as a device, computer program product, or computer readable medium. According to one aspect, the computer program product is a computer storage medium readable by a computer system and encoding a computer program comprising instructions for executing a computer process. [0008] This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
decentralized cryptocurrency networks or databases.
[0021] FIG. 1 illustrates an example environment 100 in which some exemplary embodiments of the present disclosure may be practiced. The example environment 100 includes, but is not limited to, at least one of task server 110, communication network 120, user device 130, sensor 140, and cryptocurrency system 150. [0022] Task server 110 may provide one or more tasks to user device 130 over communication network 120. For example, task server 110 may be at least one of a web server delivering or serving up web pages, an application server handling application operations between users and applications or databases, a cloud server, a database server, a file server, a service server, a game server implementing games or services for a game, and a media server delivering media such as streaming video or audio. The tasks provided by task server 110 will be discussed in more detail below.
[0023] Alternatively, cryptocurrency system 150 may provide one or more tasks to user device 130. For example, in a decentralized cryptocurrency network, the tasks may be proposed to user device 130 by miners (e.g. compute resources or nodes 210 of FIG. 2). In another example, in a centralized cryptocurrency system, a cryptocurrency server may send the tasks to user device 130.
[0024] Communication network 120 may include any wired or wireless connection, the internet, or any other form of communication. Although one network 120 is identified in FIG. 1, communication network 120 may include any number of different communication networks between any of the server, devices, resource and system shown in FIGS. 1 and 2 and/or other servers, devices, resources and systems described herein. Communication network 120 may enable communication between various computing resources or devices, servers, and systems. Various implementations of communication network 120 may employ different types of networks, for example, but not limited to, computer networks, telecommunications networks (e.g., cellular), mobile wireless data networks, and any combination of these and/or other networks. [0025] User device 130 may include any device capable of processing and storing data/information and communicating over communication network 120. For example, user device 130 may include personal computers, servers, cell phones, tablets, laptops, smart devices (e.g. smart watches or smart televisions). An exemplary embodiment of user device 130 is illustrated in FIG. 6.
[0026] Sensor 140 may be configured to sense the body activity of user 145. As illustrated in FIG. 1, sensor 140 may be a separate component from user device 130 and be operably and/or communicatively connected to user device 130. Alternatively, sensor 140 may be included and integrated in user device 130. For example, user device 130 may be a wearable device having sensor 140 therein. The sensor 140 may transmit information/data to user device 130. Sensor 140 may include, for example, but not limited to, functional magnetic resonance imaging (fMRI) scanners or sensors, electroencephalography (EEG) sensors, near infrared spectroscopy (NIRS) sensors, heart rate monitors, thermal sensors, optical sensors, radio frequency (RF) sensors, ultrasonic sensors, cameras, or any other sensor or scanner that can measure or sense body activity or scan human body. For instance, the fMRI may measure body activity by detecting changes associated with blood flow. The fMRI may use a magnetic field and radio waves to create detailed images of the body (e.g. blood flow in the brain to detect areas of activity). The material (http://news.berkely.edu/20l l/09/22/brain-movies/) shows one example of how the fMRI can measure brain activity associated with visual information and generate image data.
[0027] Cryptocurrency system 150 may include one or more processors for processing commands and one or more memories storing information in one or more cryptocurrency data structures. In some embodiments, cryptocurrency system 150 may be a centralized cryptocurrency system or network, for example, but not limited to, a server which may be privately run by a third party entity or the same entity that is running the task server 110. In other embodiments, cryptocurrency system 150 may be a publically accessible network system (e.g., a distributed decentralized computing system).
https://news.berkeley.edu/2011/09/22/brain-movies/ Scientists use brain imaging to reveal the movies in our mind
WO2020060606 - CRYPTOCURRENCY SYSTEM USING BODY ACTIVITY DATA
https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2020060606&tab=PCTDESCRIPTION
Applicants * MICROSOFT TECHNOLOGY LICENSING, LLC[US/US]; One Microsoft Way Redmond, Washington 98052-6399, US
CRYPTOCURRENCY SYSTEM USING BODY ACTIVITY DATA
BACKGROUND [0001] A virtual currency (also known as a digital currency) is a medium of exchange implemented through the Internet generally, not tied to a specific government-backed “flat” (printed) currency such as the U.S. dollar or the Euro, and typically designed to allow instantaneous transactions and borderless transfer of ownership. One example of virtual currency is cryptocurrency, wherein cryptography is used to secure transactions and to control the creation of new units. [0002] Several cryptocurrencies exist. Among these, the most well known is a blockchain-based cryptocurrency. Most blockchain-based cryptocurrency is decentralized in the sense that it has no central point of control.
However, blockchain-based cryptocurrency can also be implemented in a centralized system having a central point of control over the cryptocurrency.
Bitcoin is one of the examples of blockchain-based cryptocurrency. It is described in a 2008 article by Satoshi Nakamoto, named“Bitcoin: A peer-to-Peer Electronic Cash System”.
[0003] A blockchain is a data structure that stores a list of transactions and can be thought of as a distributed electronic ledger that records transactions between source identifier(s) and destination identifier(s). The transactions are bundled into blocks and every block (except for the first block) refers back to or is linked to a prior block in the blockchain. Computer resources (or nodes, etc.) maintain the blockchain and cryptographically validate each new block and the transactions contained in the corresponding block. This validation process includes computationally solving a difficult problem that is also easy to verify and is sometimes called a“proof-of-work”. This process is referred to as“mining”. The mining may be a random process with low probability so that a lot of trial and error is required to solve a computationally difficult problem. Accordingly, the mining may require enormous amounts of computational energy.
[0004] It is with respect to these and other general considerations that the following embodiments have been described. Also, although relatively specific problems have been discussed, it should be understood that the embodiments should not be limited to solving the specific problems identified in the background.
SUMMARY
[0005] Some exemplary embodiments of the present disclosure may use human body activity associated with a task provided to a user as a solution to“mining” challenges in cryptocurrency systems. For example, a brain wave or body heat emitted from the user when the user performs the task provided by an information or service provider, such as viewing advertisement or using certain internet services, can be used in the mining process. Instead of massive computation work required by some conventional cryptocurrency systems, data generated based on the body activity of the user can be a proof-of-work, and therefore, a user can solve the computationally difficult problem unconsciously. Accordingly, certain exemplary embodiments of the present disclosure may reduce computational energy for the mining process as well as make the mining process faster.
[0006] Systems, methods, and hardware aspects of computer readable storage media are provided herein for a cryptocurrency system using human body activity data. According to various embodiments of the present disclosure, a server may provide a task to a device of a user which is communicatively coupled to the server. A sensor communicatively coupled to or comprised in the device of the user may sense body activity of the user. Body activity data may be generated based on the sensed body activity of the user. A cryptocurrency system communicatively coupled to the device of the user may verify whether or not the body activity data satisfies one or more conditions set by the cryptocurrency system, and award cryptocurrency to the user whose body activity data is verified.
[0007] Examples are implemented as a computer process, a computing system, or as an article of manufacture such as a device, computer program product, or computer readable medium. According to one aspect, the computer program product is a computer storage medium readable by a computer system and encoding a computer program comprising instructions for executing a computer process.
[0008] This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
decentralized cryptocurrency networks or databases. [0021] FIG. 1 illustrates an example environment 100 in which some exemplary embodiments of the present disclosure may be practiced. The example environment 100 includes, but is not limited to, at least one of task server 110, communication network 120, user device 130, sensor 140, and cryptocurrency system 150.
[0022] Task server 110 may provide one or more tasks to user device 130 over communication network 120. For example, task server 110 may be at least one of a web server delivering or serving up web pages, an application server handling application operations between users and applications or databases, a cloud server, a database server, a file server, a service server, a game server implementing games or services for a game, and a media server delivering media such as streaming video or audio. The tasks provided by task server 110 will be discussed in more detail below.
[0023] Alternatively, cryptocurrency system 150 may provide one or more tasks to user device 130. For example, in a decentralized cryptocurrency network, the tasks may be proposed to user device 130 by miners (e.g. compute resources or nodes 210 of FIG. 2). In another example, in a centralized cryptocurrency system, a cryptocurrency server may send the tasks to user device 130.
[0024] Communication network 120 may include any wired or wireless connection, the internet, or any other form of communication. Although one network 120 is identified in FIG. 1, communication network 120 may include any number of different communication networks between any of the server, devices, resource and system shown in FIGS. 1 and 2 and/or other servers, devices, resources and systems described herein. Communication network 120 may enable communication between various computing resources or devices, servers, and systems. Various implementations of communication network 120 may employ different types of networks, for example, but not limited to, computer networks, telecommunications networks (e.g., cellular), mobile wireless data networks, and any combination of these and/or other networks.
[0025] User device 130 may include any device capable of processing and storing data/information and communicating over communication network 120. For example, user device 130 may include personal computers, servers, cell phones, tablets, laptops, smart devices (e.g. smart watches or smart televisions).
An exemplary embodiment of user device 130 is illustrated in FIG. 6.
[0026] Sensor 140 may be configured to sense the body activity of user 145. As illustrated in FIG. 1, sensor 140 may be a separate component from user device 130 and be operably and/or communicatively connected to user device 130. Alternatively, sensor 140 may be included and integrated in user device 130. For example, user device 130 may be a wearable device having sensor 140 therein. The sensor 140 may transmit information/data to user device 130. Sensor 140 may include, for example, but not limited to, functional magnetic resonance imaging (fMRI) scanners or sensors, electroencephalography (EEG) sensors, near infrared spectroscopy (NIRS) sensors, heart rate monitors, thermal sensors, optical sensors, radio frequency (RF) sensors, ultrasonic sensors, cameras, or any other sensor or scanner that can measure or sense body activity or scan human body. For instance, the fMRI may measure body activity by detecting changes associated with blood flow. The fMRI may use a magnetic field and radio waves to create detailed images of the body (e.g. blood flow in the brain to detect areas of activity). The material (http://news.berkely.edu/20l l/09/22/brain-movies/) shows one example of how the fMRI can measure brain activity associated with visual information and generate image data.
[0027] Cryptocurrency system 150 may include one or more processors for processing commands and one or more memories storing information in one or more cryptocurrency data structures. In some embodiments, cryptocurrency system 150 may be a centralized cryptocurrency system or network, for example, but not limited to, a server which may be privately run by a third party entity or the same entity that is running the task server 110. In other embodiments, cryptocurrency system 150 may be a publically accessible network system (e.g., a distributed decentralized computing system).
https://news.berkeley.edu/2011/09/22/brain-movies/ Scientists use brain imaging to reveal the movies in our mind
submitted by snowboardnirvana to MVIS [link] [comments]

Microsoft patents scheme to usher in technocratic fascism via data from IoT sensor devices and centralized cryptocurrency system

WO2020060606 - CRYPTOCURRENCY SYSTEM USING BODY ACTIVITY DATA
https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2020060606&tab=PCTDESCRIPTION
Before reading the following excerpts, keep this sequence of events in mind:
Master Slave (and we're not referring to HDDs here)
Step one: patent technology
Step two: sell slave IoT devices to consumers who readily purchase them especially after being promised that they'll be rewarded in cryotocurrency for their data.
Step three: collect data via Microsoft Azure on unsuspecting human subjects' fMRI, EEG, body temperatures, EKG, sleep data, digitized health care information, consumer purchasing habits, reading and viewing preferences, social media activity and correlate with activities performed (tasks).
Step four: Use data to refine AI to profile human behavior, predict behavior and refine mind reading capabilities.
This article is actually incorporated in the patent!
https://news.berkeley.edu/2011/09/22/brain-movies/ Scientists use brain imaging to reveal the movies in our mind
Step five: Institute centralized global cryptocurrency financial system with no other alternatives in which to transact legally.
https://www.reddit.com/Bitcoin/comments/4nag4b/1988_economist_cover_predicting_a_world_currency/
https://www.economist.com/finance-and-economics/1998/09/24/one-world-one-money
Step six: To understand step six, read George Orwell's "1984" or review the concept of an individual's freedoms being based not on the concept of natural rights but on their social credit scores.
Thank you Microsoft, Google, Apple, Amazon, Facebook.
Now the patent excerpts:
CRYPTOCURRENCY SYSTEM USING BODY ACTIVITY DATA BACKGROUND [0001] A virtual currency (also known as a digital currency) is a medium of exchange implemented through the Internet generally, not tied to a specific government-backed “flat” (printed) currency such as the U.S. dollar or the Euro, and typically designed to allow instantaneous transactions and borderless transfer of ownership. One example of virtual currency is cryptocurrency, wherein cryptography is used to secure transactions and to control the creation of new units. [0002] Several cryptocurrencies exist. Among these, the most well known is a blockchain-based cryptocurrency. Most blockchain-based cryptocurrency is decentralized in the sense that it has no central point of control.
However, blockchain-based cryptocurrency can also be implemented in a centralized system having a central point of control over the cryptocurrency.
Bitcoin is one of the examples of blockchain-based cryptocurrency. It is described in a 2008 article by Satoshi Nakamoto, named“Bitcoin: A peer-to-Peer Electronic Cash System”.
[0003] A blockchain is a data structure that stores a list of transactions and can be thought of as a distributed electronic ledger that records transactions between source identifier(s) and destination identifier(s). The transactions are bundled into blocks and every block (except for the first block) refers back to or is linked to a prior block in the blockchain. Computer resources (or nodes, etc.) maintain the blockchain and cryptographically validate each new block and the transactions contained in the corresponding block. This validation process includes computationally solving a difficult problem that is also easy to verify and is sometimes called a“proof-of-work”. This process is referred to as“mining”. The mining may be a random process with low probability so that a lot of trial and error is required to solve a computationally difficult problem. Accordingly, the mining may require enormous amounts of computational energy.
[0004] It is with respect to these and other general considerations that the following embodiments have been described. Also, although relatively specific problems have been discussed, it should be understood that the embodiments should not be limited to solving the specific problems identified in the background.
SUMMARY
[0005] Some exemplary embodiments of the present disclosure may use human body activity associated with a task provided to a user as a solution to“mining” challenges in cryptocurrency systems.
For example, a brain wave or body heat emitted from the user when the user performs the task provided by an information or service provider, such as viewing advertisement or using certain internet services, can be used in the mining process. Instead of massive computation work required by some conventional cryptocurrency systems, data generated based on the body activity of the user can be a proof-of-work, and therefore, a user can solve the computationally difficult problem unconsciously. Accordingly, certain exemplary embodiments of the present disclosure may reduce computational energy for the mining process as well as make the mining process faster.
[0006] Systems, methods, and hardware aspects of computer readable storage media are provided herein for a cryptocurrency system using human body activity data. According to various embodiments of the present disclosure, a server may provide a task to a device of a user which is communicatively coupled to the server. A sensor communicatively coupled to or comprised in the device of the user may sense body activity of the user. Body activity data may be generated based on the sensed body activity of the user. A cryptocurrency system communicatively coupled to the device of the user may verify whether or not the body activity data satisfies one or more conditions set by the cryptocurrency system, and award cryptocurrency to the user whose body activity data is verified.
[0007] Examples are implemented as a computer process, a computing system, or as an article of manufacture such as a device, computer program product, or computer readable medium. According to one aspect, the computer program product is a computer storage medium readable by a computer system and encoding a computer program comprising instructions for executing a computer process.
[0008] This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. decentralized cryptocurrency networks or databases.
[0021] FIG. 1 illustrates an example environment 100 in which some exemplary embodiments of the present disclosure may be practiced. The example environment 100 includes, but is not limited to, at least one of task server 110, communication network 120, user device 130, sensor 140, and cryptocurrency system 150.
[0022] Task server 110 may provide one or more tasks to user device 130 over communication network 120. For example, task server 110 may be at least one of a web server delivering or serving up web pages, an application server handling application operations between users and applications or databases, a cloud server, a database server, a file server, a service server, a game server implementing games or services for a game, and a media server delivering media such as streaming video or audio. The tasks provided by task server 110 will be discussed in more detail below.
[0023] Alternatively, cryptocurrency system 150 may provide one or more tasks to user device 130. For example, in a decentralized cryptocurrency network, the tasks may be proposed to user device 130 by miners (e.g. compute resources or nodes 210 of FIG. 2). In another example, in a centralized cryptocurrency system, a cryptocurrency server may send the tasks to user device 130.
[0024] Communication network 120 may include any wired or wireless connection, the internet, or any other form of communication. Although one network 120 is identified in FIG. 1, communication network 120 may include any number of different communication networks between any of the server, devices, resource and system shown in FIGS. 1 and 2 and/or other servers, devices, resources and systems described herein. Communication network 120 may enable communication between various computing resources or devices, servers, and systems. Various implementations of communication network 120 may employ different types of networks, for example, but not limited to, computer networks, telecommunications networks (e.g., cellular), mobile wireless data networks, and any combination of these and/or other networks. [0025] User device 130 may include any device capable of processing and storing data/information and communicating over communication network 120. For example, user device 130 may include personal computers, servers, cell phones, tablets, laptops, smart devices (e.g. smart watches or smart televisions). An exemplary embodiment of user device 130 is illustrated in FIG. 6.
[0026] Sensor 140 may be configured to sense the body activity of user 145. As illustrated in FIG. 1, sensor 140 may be a separate component from user device 130 and be operably and/or communicatively connected to user device 130. Alternatively, sensor 140 may be included and integrated in user device 130. For example, user device 130 may be a wearable device having sensor 140 therein. The sensor 140 may transmit information/data to user device 130. Sensor 140 may include, for example, but not limited to, functional magnetic resonance imaging (fMRI) scanners or sensors, electroencephalography (EEG) sensors, near infrared spectroscopy (NIRS) sensors, heart rate monitors, thermal sensors, optical sensors, radio frequency (RF) sensors, ultrasonic sensors, cameras, or any other sensor or scanner that can measure or sense body activity or scan human body. For instance, the fMRI may measure body activity by detecting changes associated with blood flow. The fMRI may use a magnetic field and radio waves to create detailed images of the body (e.g. blood flow in the brain to detect areas of activity).
The material (http://news.berkely.edu/20ll/09/22/brain-movies/) shows one example of how the fMRI can measure brain activity associated with visual information and generate image data.
[0027] Cryptocurrency system 150 may include one or more processors for processing commands and one or more memories storing information in one or more cryptocurrency data structures. In some embodiments, cryptocurrency system 150 may be a centralized cryptocurrency system or network, for example, but not limited to, a server which may be privately run by a third party entity or the same entity that is running the task server 110. In other embodiments, cryptocurrency system 150 may be a publically accessible network system (e.g., a distributed decentralized computing system).
https://news.berkeley.edu/2011/09/22/brain-movies/ Scientists use brain imaging to reveal the movies in our mind
submitted by snowboardnirvana to conspiracy [link] [comments]

Groestlcoin 6th Anniversary Release

Introduction

Dear Groestlers, it goes without saying that 2020 has been a difficult time for millions of people worldwide. The groestlcoin team would like to take this opportunity to wish everyone our best to everyone coping with the direct and indirect effects of COVID-19. Let it bring out the best in us all and show that collectively, we can conquer anything.
The centralised banks and our national governments are facing unprecedented times with interest rates worldwide dropping to record lows in places. Rest assured that this can only strengthen the fundamentals of all decentralised cryptocurrencies and the vision that was seeded with Satoshi's Bitcoin whitepaper over 10 years ago. Despite everything that has been thrown at us this year, the show must go on and the team will still progress and advance to continue the momentum that we have developed over the past 6 years.
In addition to this, we'd like to remind you all that this is Groestlcoin's 6th Birthday release! In terms of price there have been some crazy highs and lows over the years (with highs of around $2.60 and lows of $0.000077!), but in terms of value– Groestlcoin just keeps getting more valuable! In these uncertain times, one thing remains clear – Groestlcoin will keep going and keep innovating regardless. On with what has been worked on and completed over the past few months.

UPDATED - Groestlcoin Core 2.18.2

This is a major release of Groestlcoin Core with many protocol level improvements and code optimizations, featuring the technical equivalent of Bitcoin v0.18.2 but with Groestlcoin-specific patches. On a general level, most of what is new is a new 'Groestlcoin-wallet' tool which is now distributed alongside Groestlcoin Core's other executables.
NOTE: The 'Account' API has been removed from this version which was typically used in some tip bots. Please ensure you check the release notes from 2.17.2 for details on replacing this functionality.

How to Upgrade?

Windows
If you are running an older version, shut it down. Wait until it has completely shut down (which might take a few minutes for older versions), then run the installer.
OSX
If you are running an older version, shut it down. Wait until it has completely shut down (which might take a few minutes for older versions), run the dmg and drag Groestlcoin Core to Applications.
Ubuntu
http://groestlcoin.org/forum/index.php?topic=441.0

Other Linux

http://groestlcoin.org/forum/index.php?topic=97.0

Download

Download the Windows Installer (64 bit) here
Download the Windows Installer (32 bit) here
Download the Windows binaries (64 bit) here
Download the Windows binaries (32 bit) here
Download the OSX Installer here
Download the OSX binaries here
Download the Linux binaries (64 bit) here
Download the Linux binaries (32 bit) here
Download the ARM Linux binaries (64 bit) here
Download the ARM Linux binaries (32 bit) here

Source

ALL NEW - Groestlcoin Moonshine iOS/Android Wallet

Built with React Native, Moonshine utilizes Electrum-GRS's JSON-RPC methods to interact with the Groestlcoin network.
GRS Moonshine's intended use is as a hot wallet. Meaning, your keys are only as safe as the device you install this wallet on. As with any hot wallet, please ensure that you keep only a small, responsible amount of Groestlcoin on it at any given time.

Features

Download

iOS
Android

Source

ALL NEW! – HODL GRS Android Wallet

HODL GRS connects directly to the Groestlcoin network using SPV mode and doesn't rely on servers that can be hacked or disabled.
HODL GRS utilizes AES hardware encryption, app sandboxing, and the latest security features to protect users from malware, browser security holes, and even physical theft. Private keys are stored only in the secure enclave of the user's phone, inaccessible to anyone other than the user.
Simplicity and ease-of-use is the core design principle of HODL GRS. A simple recovery phrase (which we call a Backup Recovery Key) is all that is needed to restore the user's wallet if they ever lose or replace their device. HODL GRS is deterministic, which means the user's balance and transaction history can be recovered just from the backup recovery key.

Features

Download

Main Release (Main Net)
Testnet Release

Source

ALL NEW! – GroestlcoinSeed Savior

Groestlcoin Seed Savior is a tool for recovering BIP39 seed phrases.
This tool is meant to help users with recovering a slightly incorrect Groestlcoin mnemonic phrase (AKA backup or seed). You can enter an existing BIP39 mnemonic and get derived addresses in various formats.
To find out if one of the suggested addresses is the right one, you can click on the suggested address to check the address' transaction history on a block explorer.

Features

Live Version (Not Recommended)

https://www.groestlcoin.org/recovery/

Download

https://github.com/Groestlcoin/mnemonic-recovery/archive/master.zip

Source

ALL NEW! – Vanity Search Vanity Address Generator

NOTE: NVidia GPU or any CPU only. AMD graphics cards will not work with this address generator.
VanitySearch is a command-line Segwit-capable vanity Groestlcoin address generator. Add unique flair when you tell people to send Groestlcoin. Alternatively, VanitySearch can be used to generate random addresses offline.
If you're tired of the random, cryptic addresses generated by regular groestlcoin clients, then VanitySearch is the right choice for you to create a more personalized address.
VanitySearch is a groestlcoin address prefix finder. If you want to generate safe private keys, use the -s option to enter your passphrase which will be used for generating a base key as for BIP38 standard (VanitySearch.exe -s "My PassPhrase" FXPref). You can also use VanitySearch.exe -ps "My PassPhrase" which will add a crypto secure seed to your passphrase.
VanitySearch may not compute a good grid size for your GPU, so try different values using -g option in order to get the best performances. If you want to use GPUs and CPUs together, you may have best performances by keeping one CPU core for handling GPU(s)/CPU exchanges (use -t option to set the number of CPU threads).

Features

Usage

https://github.com/Groestlcoin/VanitySearch#usage

Download

Source

ALL NEW! – Groestlcoin EasyVanity 2020

Groestlcoin EasyVanity 2020 is a windows app built from the ground-up and makes it easier than ever before to create your very own bespoke bech32 address(es) when whilst not connected to the internet.
If you're tired of the random, cryptic bech32 addresses generated by regular Groestlcoin clients, then Groestlcoin EasyVanity2020 is the right choice for you to create a more personalised bech32 address. This 2020 version uses the new VanitySearch to generate not only legacy addresses (F prefix) but also Bech32 addresses (grs1 prefix).

Features

Download

Source

Remastered! – Groestlcoin WPF Desktop Wallet (v2.19.0.18)

Groestlcoin WPF is an alternative full node client with optional lightweight 'thin-client' mode based on WPF. Windows Presentation Foundation (WPF) is one of Microsoft's latest approaches to a GUI framework, used with the .NET framework. Its main advantages over the original Groestlcoin client include support for exporting blockchain.dat and including a lite wallet mode.
This wallet was previously deprecated but has been brought back to life with modern standards.

Features

Remastered Improvements

Download

Source

ALL NEW! – BIP39 Key Tool

Groestlcoin BIP39 Key Tool is a GUI interface for generating Groestlcoin public and private keys. It is a standalone tool which can be used offline.

Features

Download

Windows
Linux :
 pip3 install -r requirements.txt python3 bip39\_gui.py 

Source

ALL NEW! – Electrum Personal Server

Groestlcoin Electrum Personal Server aims to make using Electrum Groestlcoin wallet more secure and more private. It makes it easy to connect your Electrum-GRS wallet to your own full node.
It is an implementation of the Electrum-grs server protocol which fulfils the specific need of using the Electrum-grs wallet backed by a full node, but without the heavyweight server backend, for a single user. It allows the user to benefit from all Groestlcoin Core's resource-saving features like pruning, blocks only and disabled txindex. All Electrum-GRS's feature-richness like hardware wallet integration, multi-signature wallets, offline signing, seed recovery phrases, coin control and so on can still be used, but connected only to the user's own full node.
Full node wallets are important in Groestlcoin because they are a big part of what makes the system be trust-less. No longer do people have to trust a financial institution like a bank or PayPal, they can run software on their own computers. If Groestlcoin is digital gold, then a full node wallet is your own personal goldsmith who checks for you that received payments are genuine.
Full node wallets are also important for privacy. Using Electrum-GRS under default configuration requires it to send (hashes of) all your Groestlcoin addresses to some server. That server can then easily spy on your transactions. Full node wallets like Groestlcoin Electrum Personal Server would download the entire blockchain and scan it for the user's own addresses, and therefore don't reveal to anyone else which Groestlcoin addresses they are interested in.
Groestlcoin Electrum Personal Server can also broadcast transactions through Tor which improves privacy by resisting traffic analysis for broadcasted transactions which can link the IP address of the user to the transaction. If enabled this would happen transparently whenever the user simply clicks "Send" on a transaction in Electrum-grs wallet.
Note: Currently Groestlcoin Electrum Personal Server can only accept one connection at a time.

Features

Download

Windows
Linux / OSX (Instructions)

Source

UPDATED – Android Wallet 7.38.1 - Main Net + Test Net

The app allows you to send and receive Groestlcoin on your device using QR codes and URI links.
When using this app, please back up your wallet and email them to yourself! This will save your wallet in a password protected file. Then your coins can be retrieved even if you lose your phone.

Changes

Download

Main Net
Main Net (FDroid)
Test Net

Source

UPDATED – Groestlcoin Sentinel 3.5.06 (Android)

Groestlcoin Sentinel is a great solution for anyone who wants the convenience and utility of a hot wallet for receiving payments directly into their cold storage (or hardware wallets).
Sentinel accepts XPUB's, YPUB'S, ZPUB's and individual Groestlcoin address. Once added you will be able to view balances, view transactions, and (in the case of XPUB's, YPUB's and ZPUB's) deterministically generate addresses for that wallet.
Groestlcoin Sentinel is a fork of Groestlcoin Samourai Wallet with all spending and transaction building code removed.

Changes

Download

Source

UPDATED – P2Pool Test Net

Changes

Download

Pre-Hosted Testnet P2Pool is available via http://testp2pool.groestlcoin.org:21330/static/

Source

submitted by Yokomoko_Saleen to groestlcoin [link] [comments]

Blockchain – The Basics you should know

A community following banking, investing, or cryptocurrency over the last ten years may be familiar with “blockchain”. What is blockchain technology? It is a record-keeping technology behind bitcoin. In case of learning blockchain, you may have come to related terminologies- such as distributed, decentralized, and public ledger.

What is blockchain?

A Blockchain can be defined as a chain of the block that contains information. This technique is planned to timestamp digital documents so that it’s not possible to backdate them or temper them. The blockchain is used to the secure transfer of items like money, property, contracts, etc. This transfer is carried out without requiring a third-party intermediary like a bank or government. When information is recorded inside a blockchain, it is extremely hard to transform it.
The blockchain is a software protocol. Internet is necessary for running the blockchain. It is also called meta-technology as it affects other technologies. It consists of some pieces: a database, software application, some connected computers, etc. There are many wrong assumptions about blockchain. So just clear these points.

What blockchain is not?

⦁ Blockchain is not a Bitcoin, actually it is a technology behind Bitcoin.
⦁ Blockchain is the ledger to keep track of who owns the digital tokens while bitcoin is the digital token.
⦁ You can’t have Bitcoin without blockchain, but you can have blockchain without Bitcoin.

Need of Blockchain-

1. Time reduction:

Blockchain plays an important role in the financial industry. It does not require a lengthy process of verification, settlement and clearance also, so it allows quicker settlement of trades. This is because a single version of agreed-upon data of the share ledger is available between all stakeholders.

2. Reliability:

Blockchain affirms and confirms the identities of the interested individuals. This evacuates double records, reducing rates and accelerates transactions also.

3. Unchangeable transactions:

After registering transactions in chronological order, Blockchain ensures the unalterability of all operations. This means when any new block has been added to the chain of ledgers, it cannot be removed or altered.

4. Fraud prevention:

The concepts of shared data and consensus prevent possible losses due to fraud misappropriation. In logistics industries, blockchain is a monitoring system to reduce costs.

5. Security:

Attacking a traditional database is the bringing down of a specific target. Using Distributed Ledger Technology, each party can hold a copy of the original chain. So the system remains operative, even the large number of other nodes fall.

6. Transparency:

Changes to public blockchains are publicly viewable to everyone. This gives more transparency, and also all transactions are changeless.

Versions of Blockchain-

1. Blockchain 1.0: Currency

The implementation of distributed ledger technology prompted its first and obvious application: cryptocurrencies. It is used in currency and payments. It permits the financial transactions carried out through blockchain technology. Bitcoin is the most common example in this segment.

2. Blockchain 2.0: Smart Contracts

Smart Contracts are the small computer programs that work with the blockchain. They are the computer programs that automatically executes, and check conditions that are defined earlier like facilitation, verification or enforcement. It is used as an alternative for traditional contracts.

3. Blockchain 3.0: DApps:

DApps is an abbreviation of decentralized application. It has their backend code that runs on a decentralized peer-to-peer network. A DApp can have frontend code and user interfaces written in any language that can make a call to its backend, like a traditional Apps.

Structure of Blockchain-

Basically, blockchain is a public digital ledger. This ledger records transactions across computers. What makes it successful and popular? The answer is, it is centralized and distributed. Let us consider one example- Let’s say that person A wants to send some Bitcoins to another person B. To do that, they must know what is wallet address of person B. This wallet address is usually similar to an email. But we use this wallet address to send money rather than emails. Once the money is sent, it must be verified by every node. This node is a part of the blockchain network to get to person B’s wallet. In this transaction, every computer on the blockchain makes a transaction record and also saves it. Hence rather than having one transaction record kept in a bank, there are thousands of records stored in thousands of computers.
You might not like the thing of having your transaction records available on so many computers. This issue is resolved by making transactions mysterious. This is achieved by using cryptography. Hence cryptography is vital part of this technology. In case of changing transaction records, it would have to access every node ie., computer. But this is impossible. Blockchain miners are the people dedicated to devices and blockchain. Devices of these blockchain miners are the nodes on the network that validate transactions and store it in distributed ledger. These miners are get rewarded in bitcoins for their services.

Use Cases of Blockchain-

1. Government sector-

Blockchains are used in government sector for digitization of document/ contracts and proof of ownership. It can also be used for Tele-attorney service, registration and identification, IP registration and exchange, Tax receipts Notary service and document registry.

2. Markets-

Blockchain is used in marketing for billing, monitoring and data transfer. Also it is useful for Quota management in supply chain network.

3. IoT-

Blockchain technology is used in IoT for agricultural and drone sensor networks, smart home networks, integrated smart city, self-driving cars, robots and digital assistants etc.

4. Health-

Health sector uses Blockchain for data management, Big health data streams analytics, Digital health wallet smart property and personal development contracts etc.

5. Finance –

Digital Currency Payment, Inter-divisional accounting, Clearing & Trading & Derivatives and Bookkeeping also uses Blockchain technology.

Future of Blockchain-

1.Most governments around the world will create or adopt some form of virtual currency. This leads to the development of nations.
  1. By 2030, there will be more trillion-dollar tokens than there will be trillion-dollar companies.
  2. Most of the world trade will be conducted using blockchain technology.

Disadvantages of Blockchain-

1.Technology cost
  1. Speed inefficiency
  2. Illegal activity
  3. Hack Susceptibility

Conclusion-

Blockchain is a new technology that will help nation and also businesses for development. Blockchain is also used in Healthcare. Hence, it is most significant use of Blockchain technology.
Interested in incorporating blockchain to your business? Solace will be the perfect place to get started. Solace expert’s in blockchain will help your business to step forward in a wide market. For effective blockchain development, contact us.
submitted by SolaceInfotech to BlockChain_info [link] [comments]

INT - Comparison with Other IoT Projects

What defines a good IoT project? Defining this will help us understand what some of the problems they might struggle with and which projects excel in those areas. IoT will be a huge industry in the coming years. The true Internet 3.0 will be one of seamless data and value transfer. There will be a tremendous amount of devices connected to this network, from your light bulbs to your refrigerator to your car, all autonomously transacting together in an ever growing network in concert, creating an intelligent, seamless world of satisfying wants and needs.
.
Let’s use the vastness of what the future state of this network is to be as our basis of what makes a good project.
.
Scalability
In that future we will need very high scalability to accommodate the exponential growth in transaction volume that will occur. The network doesn’t need to have the ability to do high transactions per second in the beginning, just a robust plan to grow that ability as the network develops. We’ve seen this issue already with Bitcoin on an admittedly small market penetration. If scaling isn’t a one of the more prominent parts of your framework, that is a glaring hole.
.
Applicability
Second to scalability is applicability. One size does not fit all in this space. Some uses will need real-time streaming of data where fast and cheap transactions are key and others will need heavier transactions full of data to be analyzed by the network for predictive uses. Some uses will need smart contracts so that devices can execute actions autonomously and others will need the ability to encrypt data and to transact anonymously to protect the privacy of the users in this future of hyper-connectivity. We cannot possibly predict the all of the future needs of this network so the ease of adaptability in a network of high applicability is a must.
.
Interoperability
In order for this network to have the high level of applicability mentioned, it would need to have access to real world data outside of it’s network to work off of or even to transact with. This interoperability can come in several forms. I am not a maximalist, thinking that there will be one clear winner in any space. So it is easy, therefore, to imagine that we would want to be able to interact with some other networks for payment/settlement or data gathering. Maybe autonomously paying for bills with Bitcoin or Monero, maybe smart contracts that will need to be fed additional data from the Internet or maybe even sending an auto invite for a wine tasting for the wine shipment that’s been RFID’d and tracked through WTC. In either case, in order to afford the highest applicability, the network will need the ability to interact with outside networks.
.
Consensus
How the network gains consensus is often something that is overlooked in the discussion of network suitability. If the network is to support a myriad of application and transaction types, the consensus mechanism must be able to handle it without choking the network or restricting transaction type. PoW can become a bottleneck as the competition for block reward requires an increase in difficulty for block generation, you therefore have to allow time for this computation in between blocks, often leading to less than optimal block times for fast transactions. This can create a transaction backlog as we have seen before. PoS can solve some of these issues but is not immune to this either. A novel approach to gaining consensus will have to be made if it is going to handle the variety and volume to be seen.
.
Developability
All of this can be combined to create a network that is best equipped to take on the IoT ecosystem. But the penetration into the market will be solely held back by the difficulty in connecting and interacting with the network from the perspective of manufacturers and their devices. Having to learn a new code language in order to write a smart contract or create a node or if there are strict requirements on the hardware capability of the devices, these are all barriers that make it harder and more expensive for companies to work with the network. Ultimately, despite how perfect or feature packed your network is, a manufacturer will more likely develop devices for those that are easy to work with.
.
In short, what the network needs to focus on is:
-Scalability – How does it globally scale?
-Applicability – Does it have data transfer ability, fast, cheap transactions, smart contracts, privacy?
-Interoperability – Can it communicate with the outside world, other blockchains?
-Consensus – Will it gain consensus in a way that supports scalability and applicability?
-Developability – Will it be easy for manufactures to develop devices and interact with the network?
.
.
The idea of using blockchain technology to be the basis of the IoT ecosystem is not a new idea. There are several projects out there now that are aiming at tackling the problem. Below you will see a high level breakdown of those projects with some pros and cons from how I interpret the best solution to be. You will also see some supply chain projects listed below. Supply chain solutions are just small niches in the larger IoT ecosystem. Item birth record, manufacturing history, package tracking can all be “Things” which the Internet of Things track. In fact, INT already has leaked some information hinting that they are cooperating with pharmaceutical companies to track the manufacture and packaging of the drugs they produce. INT may someday include WTC or VEN as one of its subchains feeding in information into the ecosystem.
.
.
IOTA
IOTA is a feeless and blockchain-less network called a directed acyclic graph. In my opinion, this creates more issues than it fixes.
The key to keeping IOTA feeless is that there are no miners to pay because the work associated with verifying a transaction is distributed to among all users, with each user verifying two separate transactions for their one. This creates some problems both in the enabling of smart contracts and the ability to create user privacy. Most privacy methods (zk-SNARKs in specific) require the one doing the verifying to use computationally intensive cryptography which are outside the capability of most devices on the IoT network (a weather sensor isn’t going to be able to build the ZK proof of a transaction every second or two). In a network where the device does the verifying of a transaction, cryptographic privacy becomes impractical. And even if there were a few systems capable of processing those transactions, there is no reward for doing the extra work. Fees keep the network safe by incentivizing honesty in the nodes, by paying those who have to work harder to verify a certain transaction, and by making it expensive to attack the network or disrupt privacy (Sybil Attacks).
IOTA also doesn’t have and may never have the ability to enable smart contracts. By the very nature of the Tangle (a chain of transactions with only partial structure unlike a linear and organized blockchain), establishing the correct time order of transactions is difficult, and in some situations, impossible. Even if the transactions have been time stamped, there is no way to verify them and are therefore open to spoofing. Knowing transaction order is absolutely vital to executing step based smart contracts.
There does exist a subset of smart contracts that do not require a strong time order of transactions in order to operate properly. But accepting this just limits the use cases of the network. In any case, smart contracts will not be able to operate directly on chain in IOTA. There will need to be a trusted off chain Oracle that watches transactions, establishes timelines, and runs the smart contract network
.
-Scalability – High
-Applicability – Low, no smart contracts, no privacy, not able to run on lightweight devices
-Interoperability – Maybe, Oracle possibility
-Consensus – Low, DAG won’t support simple IoT devices and I don’t see all devices confirming other transactions as a reality
-Developability – To be seen, currently working with many manufacturers
.
.
Ethereum
Ethereum is the granddaddy of smart contract blockchain. It is, arguably, in the best position to be the center point of the IoT ecosystem. Adoption is wide ranging, it is fast, cheap to transact with and well known; it is a Turing complete decentralized virtual computer that can do anything if you have enough gas and memory. But some of the things that make it the most advanced, will hold it back from being the best choice.
Turing completeness means that the programming language is complete (can describe any problem) and can solve any problem given that there is enough gas to pay for it and enough memory to run the code. You could therefore, create an infinite variety of different smart contracts. This infinite variability makes it impossible to create zk-SNARK verifiers efficiently enough to not cost more gas than is currently available in the block. Implementing zk-SNARKs in Ethereum would therefore require significant changes to the smart contract structure to only allow a small subset of contracts to permit zk-SNARK transactions. That would mean a wholesale change to the Ethereum Virtual Machine. Even in Zcash, where zk-SNARK is successfully implemented for a single, simple transaction type, they had to encode some of the network’s consensus rules into zk-SNARKs to limit the possible outcomes of the proof (Like changing the question of where are you in the US to where are you in the US along these given highways) to limit the computation time required to construct the proof.
Previously I wrote about how INT is using the Double Chain Consensus algorithm to allow easy scaling, segregation of network traffic and blockchain size by breaking the network down into separate cells, each with their own nodes and blockchains. This is building on lessons learned from single chain blockchains like Bitcoin. Ethereum, which is also a single chain blockchain, also suffers from these congestion issues as we have seen from the latest Cryptokitties craze. Although far less of an impact than that which has been seen with Bitcoin, transaction times grew as did the fees associated. Ethereum has proposed a new, second layer solution to solve the scaling issue: Sharding. Sharding draws from the traditional scaling technique called database sharding, which splits up pieces of a database and stores them on separate servers where each server points to the other. The goal of this is to have distinct nodes that store and verify a small set of transactions then tie them up to a larger chain, where all the other nodes communicate. If a node needs to know about a transaction on another chain, it finds another node with that information. What does this sound like? This is as close to an explanation of the Double Chain architecture as to what INT themselves provided in their whitepaper.
.
-Scalability – Neutral, has current struggles but there are some proposals to fix this
-Applicability – Medium, has endless smart contract possibilities, no privacy currently with some proposals to fix this
-Interoperability – Maybe, Oracle possibility
-Consensus – Medium, PoW currently with proposals to change to better scaling and future proofing.
-Developability – To be seen
.
.
IoTeX
A young project, made up of several accredited academics in cryptography, machine learning and data security. This is one of the most technically supported whitepapers I have read.They set out to solve scalability in the relay/subchain architecture proposed by Polkadot and used by INT. This architecture lends well to scaling and adaptability, as there is no end to the amount of subchains you can add to the network, given node and consensus bandwidth.
The way they look to address privacy is interesting. On the main parent (or relay) chain, they plan on implementing some of the technology from Monero, namely, ring signatures, bulletproofs and stealth addresses. While these are proven and respected technologies, this presents some worries as these techniques are known to not be lightweight and it takes away from the inherent generality of the core of the network. I believe the core should be as general and lightweight as possible to allow for scaling, ease of update, and adaptability. With adding this functionality, all data and transactions are made private and untraceable and therefore put through heavier computation. There are some applications where this is not optimal. A data stream may need to be read from many devices where encrypting it requires decryption for every use. A plain, public and traceable network would allow this simple use. This specificity should be made at the subchain level.
Subchains will have the ability to define their needs in terms of block times, smart contracting needs, etc. This lends to high applicability.
They address interoperability directly by laying out the framework for pegging (transaction on one chain causing a transaction on another), and cross-chain communication.
They do not address anywhere in the whitepaper the storage of data in the network. IoT devices will not be transaction only devices, they will need to maintain data, transmit data and query data. Without the ability to do so, the network will be crippled in its application.
IoTeX will use a variation of DPoS as the consensus mechanism. They are not specific on how this mechanism will work with no talk of data flow and node communication diagram. This will be their biggest hurdle and why I believe it was left out of the white paper. Cryptography and theory is easy to elaborate on within each specific subject but tying it all together, subchains with smart contracts, transacting with other side chains, with ring signatures, bulletproofs and stealth addresses on the main chain, will be a challenge that I am not sure can be done efficiently.
They may be well positioned to make this work but you are talking about having some of the core concepts of your network being based on problems that haven’t been solved and computationally heavy technologies, namely private transactions within smart contracts. So while all the theory and technical explanations make my pants tight, the realist in me will believe it when he sees it.
.
-Scalability – Neutral to medium, has the framework to address it with some issues that will hold it back.
-Applicability – Medium, has smart contract possibilities, privacy baked into network, no data framework
-Interoperability – Medium, inherent in the network design
-Consensus – Low, inherent private transactions may choke network. Consensus mechanism not at all laid out.
-Developability – To be seen, not mentioned.
.
.
CPChain
CPC puts a lot of their focus on data storage. They recognize that one of the core needs of an IoT network will be the ability to quickly store and reference large amounts of data and that this has to be separate from the transactional basis of the network as to not slow it down. They propose solving this using distributed hash tables (DHT) in the same fashion as INT, which stores data in a decentralized fashion so no one source owns the complete record. This system is much the same as the one used by BitTorrent, which allows data to be available regardless of which nodes will be online at a given time. The data privacy issue is solved by using client side encryption with one-to-many public key cryptography allowing many devices to decrypt a singly encrypted file while no two devices share the same key.
This data layer will be run on a separate, parallel chain as to not clog the network and to enable scalability. In spite of this, they don’t discuss how they will scale on the main chain. In order to partially solve this, it will use a two layer consensus structure centered on PoS to increase consensus efficiency. This two layer system will still require the main layer to do the entirety of the verification and block generation. This will be a scaling issue where the network will have no division of labor to segregate congestion to not affect the whole network.
They do recognize that the main chain would not be robust or reliable enough to handle high frequency or real-time devices and therefore propose side chains for those device types. Despite this, they are adding a significant amount of functionality (smart contracts, data interpretation) to the main chain instead of a more general and light weight main chain, which constrains the possible applications for the network and also makes it more difficult to upgrade the network.
So while this project, on the surface level (not very technical whitepaper), seems to be a robust and well thought out framework, it doesn’t lend itself to an all-encompassing IoT network but more for a narrower, data centric, IoT application.
.
-Scalability – Neutral to medium, has the framework to address it somewhat, too much responsibility and functionality on the main chain may slow it down.
-Applicability – Medium, has smart contract possibilities, elaborate data storage solution with privacy in mind as well has high frequency applications thought out
-Interoperability – Low, not discussed
-Consensus – Low to medium, discussed solution has high reliance on single chain
-Developability – To be seen, not mentioned.
.
.
ITC
The whitepaper reads like someone just grabbed some of the big hitters in crypto buzzword bingo and threw them in there and explained what they were using Wikipedia. It says nothing about how they will tie it all together, economically incentivize the security of the network or maintain the data structures. I have a feeling none of them actually have any idea how to do any of this. For Christ sake they explain blockchain as the core of the “Solutions” portion of their whitepaper. This project is not worth any more analysis.
.
.
RuffChain
Centralization and trust. Not very well thought out at this stage. DPoS consensus on a single chain. Not much more than that.
.
.
WaltonChain
Waltonchain focuses on tracking and validating the manufacture and shipping of items using RFID technology. The structure will have a main chain/subchain framework, which will allow the network to segregate traffic and infinitely scale by the addition of subchains given available nodes and main chain bandwidth.
DPoST (Stake & Trust) will be the core of their consensus mechanism, which adds trust to the traditional staking structure. This trust is based on the age of the coins in the staker’s node. The longer that node has held the coins, combined with the amount of coins held, the more likely that node will be elected to create the block. I am not sure how I feel about this but generally dislike trust.
Waltonchain's framework will also allow smart contracts on the main chain. Again, this level of main chain specificity worries me at scale and difficulty in upgrading. This smart contract core also does not lend itself to private transactions. In this small subset of IoT ecosystem, that does not matter as the whole basis of tracking is open and public records.
The whitepaper is not very technical so I cannot comment to their technical completeness or exact implementation strategy.
This implementation of the relay/subchain framework is a very narrow and under-utilized application. As I said before, WTC may someday just be one part of a larger IoT ecosystem while interacting with another IoT network. This will not be an all-encompassing network.
.
-Scalability – High, main/subchain framework infinitely scales
-Applicability – Low to medium, their application is narrow
-Interoperability – Medium, the framework will allow it seamlessly
-Consensus – Neutral, should not choke the network but adds trust to the equation
-Developability – N/A, this is a more centralized project and development will likely be with the WTC
.
.
VeChain
\*Let me preface this by saying I realize there is a place for centralized, corporatized, non-open source projects in this space.* Although I know this project is focused mainly on wider, more general business uses for blockchain, I was requested to include it in this analysis. I have edited my original comment as it was more opinionated and therefore determined not to be productive to the conversation. If you would like to get a feel for my opinion, the original text is in the comments below.\**
This project doesn't have much data to go off as the white paper does not contain much technical detail. It is focused on how they are positioning themselves to enable wider adoption of blockchain technology in the corporate ecosystem.
They also spend a fair amount of time covering their node structure and planned governance. What this reveals is a PoS and PoA combined system with levels of nodes and related reward. Several of the node types require KYC (Know Your Customer) to establish trust in order to be part of the block creating pool.
Again there is not much technically that we can glean from this whitepaper. What is known is that this is not directed at a IoT market and will be a PoS and PoA Ethereum-like network with trusted node setup.
I will leave out the grading points as there is not enough information to properly determine where they are at.
.
.
.
INT
So under this same lens, how does INT stack up? INT borrows their framework from Polkadot, which is a relay/subchain architecture. This framework allows for infinite scaling by the addition of subchains given available nodes and relay chain bandwidth. Custom functionality in subchains allows the one setting up the subchain to define the requirements, be it private transactions, state transaction free data chain, smart contracts, etc. This also lends to endless applicability. The main chain is inherently simple in it’s functionality as to not restrict any uses or future updates in technology or advances.
The consensus structure also takes a novel two-tiered approach in separating validating from block generation in an effort to further enable scaling by removing the block generation choke point from the side chains to the central relay chain. This leaves the subchain nodes to only validate transactions with a light DPoS allowing a free flowing transaction highway.
INT also recognizes the strong need for an IoT network to have robust and efficient data handling and storage. They are utilizing a decentralize storage system using DHT much like the BitTorrent system. This combined with the network implementation of all of the communication protocols (TCP/IP, UDP/IP, MANET) build the framework of a network that will effortlessly integrate any device type for any application.
The multi-chain framework easily accommodates interoperability between established networks like the Internet and enables pegging with other blockchains with a few simple transaction type inclusions. With this cross chain communication, manufactures wouldn’t have to negotiate their needs to fit an established blockchain, they could create their own subchain to fit their needs and interact with the greater network through the relay.
The team also understands the development hurdles facing the environment. They plan to solve this by standardizing requirements for communication and data exchange. They have heavy ties with several manufacturers and are currently developing a IoT router to be the gateway to the network.
.
-Scalability – High, relay/subchain framework enables infinite scalability
-Applicability – High, highest I could find for IoT. Subchains can be created for every possible application.
-Interoperability – High, able to add established networks for data support and cross chain transactions
-Consensus – High, the only structure that separates the two responsibilities of verifying and block generation to further enable scaling and not choke applicability.
-Developability – Medium, network is set up for ease of development with well-known language and subchain capability. Already working with device manufacturers. To be seen.
.
.
So with all that said, INT may be in the best place to tackle this space with their chosen framework and philosophy. They set out to accomplish more than WTC or VEN in a network that is better equipped than IOTA or Ethereum. If they can excecute on what they have laid out, there is no reason that they won’t become the market leader, easily overtaking the market cap of VeChain ($2.5Bn, $10 INT) in the short term and IOTA ($7Bn, $28 INT) in the medium term.
submitted by Graytrain to INT_Chain [link] [comments]

Bitcoin Internals: Verifying Merkle Roots using Merkle Proofs in JavaScript Bitcoin Q&A: Data integrity and validation of keys How Does Bitcoin Work ? (The Basics) - Beginners Guide To Bitcoin - How To Get Started With Bitcoin Bitcoin Miner - What is a Bitcoin Miner? - Video How Bitcoin Works in 5 Minutes. (Technical)

They define the probability of mining a valid block as the relative hashing power of the miner at every point in time r i (t) divided by the total hashing power of all the miners in the network at ... If the block is released by mining pool or miner, each peer running bitcoin wallet such as bitcoin-qt or bitcoind will verify the transactions in the block before relaying the block. The steps are following: Verify SHA256 block hash which is structured from version, pref_block,merkle_root,timestamp, bits, nonce and standard SHA256 padding. When ... Bitcoin Header Node (BHN) is a lightweight Bitcoin node that syncs and persists Bitcoin block headers. Developers can now verify Chainpoint proofs without needing a full Bitcoin node or a third ... Such forks are known as Miner Activated Soft Forks (MASF) as they are dependent on miners for activation. And my understanding is that part of the slow sync is the. Goldhandel Düsseldorf. It was intended to be a hard fork from Bitcoin Core's SegWit chain which . R/Bitcoin Rules Fast Bitcoin blockchain synchronization I got tired of waiting hours or even days to perform the initial Bitcoin ... Exploring Miner Evolution in Bitcoin Network Luqin Wang1 and Yong Liu2 1 Department of Computer Science and Engineering 2 Department of Electrical and Computer Engineering NYU Polytechnic School of Engineering Abstract. In recent years, Bitcoin, a peer-to-peer network based crypto digital currency, has attracted a lot of attentions from the media, the academia, and the general public. A user ...

[index] [22150] [29768] [36187] [36780] [23678] [17374] [31260] [21235] [22650] [6447]

Bitcoin Internals: Verifying Merkle Roots using Merkle Proofs in JavaScript

These transactions are collected in blocks (files where data related to Bitcoin is recorded) in a process called mining (process of adding transaction records to Blockchain), which is done by ... Miners verify blocks that contain payment data using electricity and mining equipment such as high-power computing chips. When a miner verifies a block and the block then enters the Bitcoin ... A transaction is a transfer of value between Bitcoin wallets that gets included in the block chain. Bitcoin wallets keep a secret piece of data called a private key or seed, which is used to sign ... As of today, new blocks are mined every 10 minutes on average, with each block generating 12.5 new Bitcoin as rewards to miners. This rate will continue until the year 2020, when 6.25 new Bitcoin ... bitcoin miner, bitcoin gpu, cuda bitcoin miner, python opencl bitcoin miner, bitcoin miner software, bitcoin miner virus, bitcoin miner download, bitcoin miner windows, online bitcoin miner,

#